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LES, DNS and RANS for the Analysis of High-Speed

Turbulent Reacting Flows

V. Adumitroaie, P.J. Colucci, D.B. Taulbee and P. Givi

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, New York 14260-4400

Abstract

The purpose of this research is to continue our efforts in advancing the state of knowledge in

large eddy simulation (LES), direct numerical simulation (DNS) and Reynolds averaged Navier

Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows.

In the second phase of this work, covering the period: August 1, 1994 - August 1, 1995, we have

focused our efforts on two programs: (1) Developments of explicit algebraic moment closures for

statistical descriptions of compressible reacting flows, (2) Development of Monte Carlo numerical

methods for LES of chemically reacting flows. This report provides a complete description of

our efforts during this past year as supported by the NASA Langley Research Center under

Grant NAG-l-1122.

Technical Monitor:

Dr. J. Philip Drummond (Hypersonic Propulsion Branch, NASA LaRC, Mail Stop 197, Tel: 804-

864-2298) is the Technical Monitor of this Grant.



1 Introduction

We have just completed our Year 2 of the Phase II activities on this NASA LaRC sponsored project.

The total time allotted for this phase is three years; this phase was followed at the conclusion of

Phase I activities (also for three years). Thus, in total we have completed five years of NASA LaRC

supported research and one more year is remaining. Within the past five years, we have considered

many issues of interest to the NASA LaRC in improving the state of affairs in DNS, LES and RANS

of high speed turbulent reacting flows. Our previous four annual reports provide detail information

on our past achievements. This report provides a complete description of our activities in Year 5.

Our efforts within the past year have been primarily concentrated on two main tasks: (1) Develop-

ment of algebraic moment closures for statistical description of (highly) compressible flows, and (2)

Development of an efficient Monte Carlo computational procedure for LES of chemically reactive

flows. The efforts in (1) are in continuation of our previous work I (discussed in our Year 4 annual

report), and the work pertaining to (2) is in continuation of our previous work 2'3 (discussed in our

Year 3 annual report). In addition, we have devoted a portion of our efforts to make use of the

models in (1) for the purpose of LES. At this point, our achievements are not yet a level suitable

for documentation. Our achievements on each of the two constituents of the work in Year 5 are

described in the next two sections.

2 Algebraic Turbulence Closures for High Speed Turbulent Flows

2.1 Introduction

For the incompressible regime the hterature on computational prediction of nonreactive turbulent

transport is abundant with schemes based on single-point statistical closures for moments up to

the "second-order". 4-s Referred to as Reynolds stress models (RSM), these schemes are based on

transport equations for the second order velocity correlations and lead to determination of "non-

isotropic eddy-diffusivities." This methodology is more advantageous than the more conventional

models based on the Boussinesq approximations with isotropic eddy diffusivities (such as the k - e

type closures4'9). However, the need for solving additional transport equations for the higher order

moments could potentially make RSM less attractive, especially for practical applications. For

example, it has been recently demonstrated l° that the computational requirement associated with

RSM for predictions of three-dimensional engineering flows is more than 8070 higher than that

required to implement the k - e model. The increase is naturally higher for second-order mod-

eling of chemically reacting flows owing to the additional length and time scales which have to

be considered} 1-1r A remedy to overcome the high computational cost associated with RSM is to

utilize "algebraic" closures} s-2s Such closures are either derived directly from the RSM transport

equations, or other types of representations 26-29 that lead to anisotropic eddy diffusivities. One



of the original contributionsin the developmentof algebraicReynoldsstressmodels(ARSM) is
due to Rodi.2° In this work, all the stresses are determined from a set of "implicit" equations

which must be solved in an iterative manner. Pope 18 offers an improvement of the procedure by

providing an "explicit" solution for the Reynolds stresses. This solution is generated via the use

of the Cayley-Hamilton theorem, but is only applicable for predictions of two-dimensional (mean)

flows. The extension of Pope's formulation has been recently done by Taulbee 19 and Gatski and

Speziale. 24 In these efforts, the Cayley-Hamilton theorem and the "symbolic" matrix manipulation

techniques are used to generate explicit algebraic Reynolds stress models which are valid in both

two- and three-dimensional flows.

In recent years the fundamental research on compressible turbulent flows has experienced a period of

impetus owing to an increasing involvement of the propulsion community in the design high-speed-

high-altitude ramjet engines. Although new experimental and numerical information is continuously

accumulating over the years (for reviews see Lele, 3° Gutmark et al. 31) the theory of compressible

turbulence has not reached maturity yet. Several important aspects have been recognized about the

nature of the turbulent state of a compressible medium and progress has been made in advancing

the modeling of simple physical flow phenomena, but the inclusion of compressibility effects and of

variable inertia effects in the turbulence models is an issue still under investigation, especially for the

second-order moment closures. Using dimensional analysis in physical space 32 or in Fourier space, 33

asymptotic analysis, 34 rapid-distortion theory, 35 singular perturbation method 36 inside acoustic

theory previous contributions have exploited the decomposition concept of the compressible field

to generate models for terms specific to high-speed flows, i.e. pressure dilatation and dilatational

dissipation which have been perceived to contribute to the reduced growth rate of the compressible

mixing layer. These models have been applied in many instances as compressibility corrections in

conjuncture with the standard k - e model 37 or with a generalized form of the k - e model 33 or with

the actualized incompressible Reynolds stress turbulence model. 3s'39 By contrast true compressible

second-order modeling attempts 35'4° are very few.

The specific objective is to provide explicit algebraic relations for the Reynolds stress and for

the "turbulent flux" of scalar variables in the high-speed regime. Both non-reacting and reacting

flows with heat release are considered. In the latter, a second-order irreversible chemical reaction ill

considered in turbulent flows with initially segregated reactants. The closures explicitly account for

the influence of the the turbulent Mach number and DamkShlernumber (only in the scalar model)

and density gradient, pressure gradient and mean dilatation effects are included in the closures.

Similar to previous contributions, 1s'41'19-2S the starting equations are the differential equations for

the second order moments. Linear closures for the pressure-strain and the pressure-scalar gradient

correlations are proposed and simple models for the averaged Favr_ scalar fluctuations are derived

and embedded in the final explicit algebraic models.



2.2 Governing Equations

In the statistical approachto the turbulenceproblemthe instantaneousequationsare usedto
obtainthe governingequationsfor the meanvariables.Denoteby overlineensembleaverageand
by bracketsdensityweighted(Favr6)ensembleaveraging:

pX
(x) = -=

P

Accordingly, we have the following decomposition rules:

X=X+X', X-'--7=0

x = (x) + x", (x") = o, (x)

The governing equations are written in normalized form (with respect to reference values: 6_ -

vorticity thickness for length, po_, u¢o, T_, poo) for a compressible, reacting with heat release

(A + rB --+ (r + 1)P + heat) mean turbulent flow.

Continuity:

0--[ + Ox: - O. (1)

Conservation of momentum:

Ot Oxj Ozj Oxi Oxj

i,j=1,2,3 (2)

where the stress tensor is aji(u) = 2p[SO(u )- ½Spp(u)(_ij]/Re = 2pS_(u)/Re. The present notation

for strain rate Sij(u) = t°--_ Ouaz: + _, )/2 and for all the other linear differential operator is more suitable

for the compressible problem where the two type of averages (which have different properties

with respect to the linear differential operators) are naturally encountered. Hereinafter the star

exponent will indicate the traceless tensor (deviatoric part) correspondent to the unstarred tensor.

The mean viscosity (#) follows a Maxwell-Rayleigh variation law with the mean temperature, i.e.

(p)/#_ef = ((T)/T,-¢I) n, n = 0.76. The fluctuations of the viscosity are neglected so that its

correlations with other variables in the flow are zero. Within the present notation the averaged
---77

stress "6ji(u) is equal to aji((u)) + aji(u ).

Let et = (T - 7CeYp + uju:/2)/(_'(_- 1)M2). Then the total energy equation is:

0-f(e,} O-p(et)(uj) 0-q3(T, I%) Op(uie_) 0 (u_Ty:i(u) _ ___j) (3)
O---'T + Oxj Ox) Ox.: Ox:



where the averaged heat flux is

qj(T, Yp) = (._ _ 1)RePrM2 0zj _e YP

"qj(T, Yp) = qj( (T), (YPI ) + qj(T", Yp),

p-aj= -f(u_)+ -_-_-_(ujT ),

_oAu) = (u_)_j_((_))+ (u,)_j_(7) + _'-_oj_((_/)+ u-_(_")

and

-fi(uje,) = "7('7- 1) M:plujT )

Conservation of species:

+-fi(uju_ )(u_)

_(_) + + + _,
o-----i- Ox_ o_j _ \ SZ-ReO_j ]

a = A,B,P. (4)

where &_ represents the rate of chemical reaction (&A _-- r_'dB1• = _ r__Wp).1 • .

[ (1 ,5,_ = -Daexp -Ze T Tf

and its mean approximated as:

w_ __ -Daexp -Ze (T) Tf

And in the assumption of a perfect gas mixture, the equation of state:

1

_ 7M_(T ) (7)

Here p, ui, p, et, T, Yo, Re, Pr, M, Ce, Le, Sc, Ze and Da denote the fluid density, the i-th

component of the velocity vector, the pressure, total energy, temperature, mass fraction of species _,

the Reynolds number, the Prandtl number, the Mach number, the heat release parameter, the Lewis

number, the Schmidt number, the Zel'dovich number and the DamkShlernumber, respectively.

The closure problem consists in providing models or closed transport equations for the second order

moments that appear in the equations for the mean variables. In general, the models are based on

length scales and time scales constructed from second order quantities obtained from the following



transportequations.The equationfor the kineticenergyof the turbulence(k) = (u_ui )/2 reads:

The turbulent dissipationp e = aj;(u") °--_ " (u" 4 2 "oxj = -fi(-_*+ "gd) = 2#_ij(u )flij ) + 3PSpp(U ) is split

1 ( Ou, Ouinto solenoidal and dilatational parts, 4:'3:'34 with _j(u) = -_ _ - _x,) as the rotation rate. The

solenoidal part is computed from the equation:

with C¢_ = 1.44 and C_2 = 1.92. For the dilatational part there are available several models. 32-a4,36

The model of Taulbee and VanOsdo133 for the dilatationa] terms combined requires additional

transport equations and our intention this work is to keep the number of equations at minimum.

Other options are the model proposed by Sarkar et al. 34

_d = __M_ (10)

and the model of Ristorcelli 36

-Q= _[I_+61;I_]+ r 2 302+5_z2] •

_ 3 "_ ( "]'-5 [13a_ 15w2] Mt4e_
(11)

The parameters are I_ = 0.3, I_ = 13.768, I_ = 2.623, I_ = 1.392, I_ = 3, a = 1 + 4. Also, Mt

denotes the turbulent Mach number, that is M_ = _ (k)/c _ and Rt the turbulent Reynolds number

Rt = p(k)2/(9q#)Re. The local speed of sound is given by c2 = TIM _.

The corresponding second-order quantities necessary for the temperature calculations are the tem-

perature variance (T ''2) and the thermal turbulent dissipation, -fi'_o - _ aT" OT" For the former,
-- PrRe Oxj Oxj "

starting from the temperature equation with cv constant, we have:

0_(_ ''_) o_(_"_)(_) 0_(_]T '':) 0 ( _. 0F_ _ 2_(_T"_0(T)

2_, OT"OT 0 ( 2._#vO<T)'_ 2_. OT'_O<T>
PrRe Oxj Ox3 + _xj _ PrRe cOxj ] - PrRe Oxj Oxj + 27Ce &pT" -

_xj +(T )--_-xj + \ -_x3/] +27(7-1)M2T"aiJ(u)OUj Oxj"
(12)



Thetransport equationfor the thermalturbulentdissipationis givenby:

_+
cOt Oxj cO (._p(u_eo)+ # 0_o) _G ,,. CO(T)COxj ScRecoxj - CmP(-_ (ujT ) Oxj

C_ _ , .... O(_d _ _ ,_ __o7o
(13)

The constants take the values C m = 2.0, C_3 = 2.0, C_4 = C_2 - 1 = 0.92, C_2 = 0.5.

Treatment of the scalar variable requires the solution of additional transport equations for the
,, z"

,, p,, .,_e.__O_C_
reactants' covariance (Y_ } 3 ) and dissipations _ _3 = _cr_ _ 0_j • For the covariances we have:

cOt
+ , : ..COxj COxj _xj ScRe Oxj

..... cO())) .... cOO_) 2. cO_: aY;

+c_oY'd + c_Y2. (14)

Source terms in the expanded form read (no summation on greek indexes in all subsequent equa-

tions)

. .,, [(, --1)] --2r''Y''Y'''_ 0_'}_))(}_)+((}o}B)+T_ P tl'_' A) Jc p" z"

(:f_']_))(YA) + (Y.)'A ) B) + 0 _ YA Ys)]. (15)

Similarly, the scalar dissipations are obtain from (hereinafter eo = (_o):

Ot Oxj - COxj -p(uje_3) + ScRe COxs

. ,,..,,,oo_)'_ __,,,_ ..... o(,,d

-2

(16)

In this equation, the chemical source term is of the form:

[ (1 1)]_2[(__Ao_j_._AB)(yB)q_(__Bfl+__c_B)(YA)] " (17)Sc,3=-Daexp-Ze (_) Tf

To close the transport equations for the second order quantities all the third-order transport terms

are described by the gradient diffusion hypothesis. Denoting by a"b" any of the second-order



correlations,wehave:

,, _ .... O(a"b")-p(_,a"b") = -c;p ,, ("_"J) ox----_'
(18)

where C, is taken to be equal to 0.22 for all non-gradient correlations ( a"b" = k or a"b" = y:'2),

whereas for the turbulent dissipations ( a"b" = e_ or a"b" = e_), Cs - 0.18. Also, the molecular

transport terms are neglected under the assumption of high Reynolds-Peclet numbers flow.

2.3 Models Development

2.3.1 ARSM

An improved explicit ARSM has been derived by Taulbee m from the modeled transport equation

for the Reynolds stresses. This model is based on the general linear pressure-strain closure given by

Launder el al. 43 The improvement is due to an extended range of validity; the model is valid in both

small and large mean strain fields and time scales of turbulence. A similar line of reasoning is made

to obtain an algebraic closure for the unclosed correlations in compressible regime. The transport

equations governing these correlations are transformed into algebraic expressions by making two

assumptions: (1) Existence of a "near-asymptotic" state, and (2) the difference in the transport

terms is negligible, in other words we look for the fixed point solution in the structural equilibrium

limit. The starting equations for the Reynolds stress equation are described by:

Ot Oxk Oxk

+_:o_k,((_)) =oo_j((_)) [ .0< o_Jo_k + _ Oxk Jk(u")-_xk+ _m(4')-_zk (19)

Hereafter, a designates the anisotropic stress tensor, aij = [(u:u_)/(k)- 2_ij/3], the Kronecker

symbol is _ - [_,j] = 1 for i = j = 1,3 and 0 otherwise, r = (k}/7= is the local turbulence time

scale, a = (Stj((il))S;i((tl))) 1/2 and w = (flij((u))flji((u))) '/2 are tensor invariants.

The Reynolds stress equation is rewritten in terms of a/(ra):

_Daij/(ra) 1 [orijk (u;u;)OTk]
"°P D_ -(k) L_ @) -W£_j

@-5I_ -WxT=_J - _ Pi, + n,5 + M,j + v,_ - -f _,, -

[ - ]_pa_j C<2_2+(2_Cq)__+_P rDa +2"it4+l}+P'd--PT_ (20)



where

.... ,O(uj) , ,, ,,,O(ud 2 .... O(ut)e.]PiS = PiJ- 2P$iJ = --P3 {uiuk)_ + _ukuj) -_xk "3(ukut)--_-xk " 1

is the production of Reynolds stress,

\ Oxj + ox, ] - _P'-_x__'j

(21)

(22)

is the pressure-strain correlation,

. _Oakj(<'4) 2-_0°kt((u)2 ,5 -'-_Oaki((u)) + ui uz )_ij (23)
Vii = Vii - "_Y ij = uj Oxk Oxk 3 Oxk

is the mass flux/viscous diffusion term,

M,5= M,_- 5M_,_= - V, + j_ 5ukO-Z;xO,q (24)

is the mass flux/pressure gradientterm (also called enthalpic production by exchange with enthalpic

energy 42)

( 2 ) ,, Ou; ,, Ou; 2 ,, OuT-__5 = -_ -e_j- 5-e_,j = _,jk(u)-_xk+ ok,(u )-_k 5°_k(u)-5-22zk_ij (25)

the anisotropy of the dissipation. The dyads involving the mass flux vector can be added to a single

tensor. In free shear flows the viscous diffusion part is negligible owing to the high Reynolds numbers

characteristic to these flows. Nevertheless, the present analysis can accommodate the discarded

term when necessary, such as near-wall flows. Hence, in subsequent equations the tensor .Mi5 can be

used to include the viscous effects. Using a rationale similar to the incompressible situation, 43'6 the

pressure strain-correlation model can be written as (in this attempt the supplementary compressible

terms that appear in the Poisson equation have been neglected as being of second order, a rough

approximation, but valid in the low Mach number regime):

(26)

Our goal being to obtain an explicit algebraic Reynolds stress model, the integrals Y.piqj as well as

the tensor .Aij will have to be expressed as linear functions of the anisotropy of the Reynolds stress

tensor so that the final equation is solvable by exact analytic methods. Therefore

Aij : -CI-P "_aij q- .App

gpiq_.__._3= Ol _qi_pj -t- ot2( bpq_ij _- _qj_pi ) "_- al _pjaqi ol-

(k)
a2( _pqai j -1- _piaq. 1 -1- _ijapq -t- _jqapi ) + a4_qiapj (27)



Thisaboveform for 5viqj satisfies already symmetry constraints. To determine the coefficients two

more constraints are applied: the normalization condition which translates into :rvpqj = (u_u_l

and a matching condition such that from the trace of IIij is obtained an existing model for the

pressure dilatation (replacing the customary incompressible constraint which is recovered from the

above condition in the limit of zero Mach number). Some of the existing proposals to model this

term necessitate transport equations such as density variance 33 or pressure variance. 35 Two recent

pressure dilatation models 44'36 do not require separate equations, the model of Sarkar: 44

in = - M:[ (_, , M, X, (28)

where X1 = 0.15, X2 = 0.2, X3 = 0.2 and the model of Ristorcelli 36

p'd = -xMt2[ -1 2-_-fi{k)Spp + P - p -_+ Tk - _M_7(7 - 1)(PT + _ _ + TT)]

_p(k}M2t x, D(3aDt 5w2) (29)

where

r

2Ipd Ipd

X = 1 + 2IpdMt _ + _Ipd_14_("t - 1)' X'=

[ ]I_ = _r_ + l;_ 2_,_- 5=,_ ,

1+ 2bdM? + _,dMYr(v- 1)'

I_ = a2I_ (30)

Using the latter model, the matching constraint on the _-piqj produces

_,M_ 7

The same condition enforces also that

.Av, = xM?[_ _ + _Mt:7('_ - 1)(PT + _)]- -fi{k}Mt2x'D(3a2Dt 5:v2)

(transport terms have been neglected based on the local homogeneity assumption). In this manner

a linear pressure-strain model is obtained. It is known that with linear forms it is impossible

to satisfy realizability conditions requiring that the eigenvalues of the Reynolds stress tensor be

positive. To overcome this deficiency we employ a method suggested by Schumann 45 and detailed

by Shih and Shabbir. 4e If F = 1 + 27III/8 + 9II/4 is a parameter involving the second invariant

II --½aija3, and third invariant II1 ]----. = --saijajkaki of the Reynolds stress anisotropy tensor,

then the following asymptotic behavior for the pressure strain-model ensures that realizability is

satisfied:

2

A_ - -_-fi'_ = C F' asF_O

10



0/ p) -
Ip,q, - 0 as F --,0 (31)

where the index e indicates that the relations are written in the principal axes of (u_'u_ I. To enforce

this kind of decay additional parameters are introduced in the pressure strain-model which reads

in final form:

Hid --fi eii = -Cl"f-_aij.arF _" +-fi(k} 4 + .__dxMt Sij((u)) +

2 ,

[1 - C4 - xM_][aipOpj((u)) - Ftip((u)/ap/] + 3 xMt 2Spp((u))aij] Br F z" (32)

with C3 = (5-9C2)/11 and C4 = (1 + 7C:)/11. The value for the constant C2 will be the same as in

the incompressible model to preserve consistency in the zero Mach number limit, that is C2 = 0.45.

The parameters are _ = 0.1, f_r = 0.5, A_ = min(F -°', 0.1 -a_) and B_ = min(F -t_r, 0.1-_). The

mass flux is usually modeled by gradient-transport hypothesis 3s or solving its transport equations. 33

A compromise between economy and accuracy is obtained using a model proposed by Ristorcelli: 47

M_!__lp/ip e) - 1)]. Here v0 ul and v2 are the coefficients obtained fromwhere r_ = Mtr/[1 + 2_, _ i_

the inversion of the matrix Gij = _i¢ + r_: v0 = -(1 + IG + IIG)v2, v_ = (1 + IG)u2,

u2 = (1 + IG + IIG + IIIG) -1 , the Roman numbers representing the invariants of G. For simplicity

we will use only the lowest order contribution from this model to obtain:

12 .34,_
po PO

where

_ij = Ozi Ozj

is the mean density gradient-mean pressure gradient dyad. If the entire model is to be used in the

following equations R* should be replaced with .M* and set b2 = -1/(_(k)).

The final equation is obtained introducing the above expressions for the pressure-strain correlation

model, production and mass flux terms into the equation for aij. To get the fixed point solution we

set to zero the Lagrangian derivative as well as the difference in the transport terms. This results

in the following linear tensorial equation written in matrix form (the braces signify the trace of the

matrix inside the braces):

a=-gr[blS*+b2R'+b3(aS'+S*a-_{aS*}')-b4(afl-fla)] (35)

11



7 M2, 1 2
with bl-- -_-BrF3r(4 +-_-6X t ),b2 = _5%v0, b3= 1-BrFZ_(1-C3+xM2),b4 = 1-BrFZ'(1 -

C4 - xMt2), and

f _- P r Da
[ArF_'Caf -- + C, 2 - 2 + (2 - C,,)_--_-- + -_'-'_'7+g

pes o- ,.L/'t

-- ]--1
2r. 1 xM2t BrFa_)Svv((u))+ 2 M + p'd-'fi-_c (36)

The task of solving the equation (35) is formidable. From the above equation we see that the

anisotropy of the Reynolds stress tensor is dependent on three primary second order tensors , two

symmetric and one skew-symmetric, aij = aij(S*, fl, R*). The solution can be expressed as a finite

3-D tensor polynomial,

a = _, C_T "x (37)

that is a linear combination of all the linear independent tensor products formed from the three

primary tensors. The coefficients of this polynomial are function of the set of independent invariants

which form the integrity basis for this problem. In this case the dimension of the minimal tensor

base is A = 41 (cf. Spencer 4s) and although not all of the tensor products will appear in the final

result, there is little hope that the model will be of practical use at this time. A way to circumvent

this difficulty is to make a simplifying approximation regarding the b3 term. For most practical

free-shear flow applications F > 0.1, therefore in the low turbulent Mach number domain b3 -_ Ca.

It has been argued 19'2s that for the range of values used for the constant C2 the inequality Ca << C4

holds and therefore the term multiplied by C3 will have small effect on the solution. Thus using

the superposition principle a = a s + a R where a s stands for the solution dependent on S*,

a s =-9r[blS*-b4(aSf-faS)] (3S)

and a ft denoting the solution dependent on R*,

aft = -9"r [b2R* - b4(aRf - faR)]. (39)

Applying the results of Taulbee 19 we have

a s -2C,,rS* - 4a2r2(S*_/- fS*) - 8a3r3(_2S * + S*f 2 2{S*_2}_5)

1{n2}_)
-16ct4r4(fS*_"_2 -- _2S*_'_) - 32a'sr5{S*f2}(f2 -- 5

(40)

1 2 3 3/, /.3 _47 h20_2)hl, a2 _blb4g h2, a3 _blb_g3ha, a4 = - ha, a5where C u = big(1 - _ = = _1_4_

_3 4 5gblb4g hi, ho = b4gr, hi = h_[(1 - 2ho2_2)] -1 and h2 = [2- h_vz2] -1. Similarly,

aft -2CurR* - 4a2r2(R*f - fiR*) - 8o3r3(f/2R * + R*f 2 2 {R*£/2}/5)
= -5

12



1
_ 16_4_4__R__ 2 - i't2R*a)- 32_svS{R*i_2}(_ 2 - _{i_2}_i) (41)

and the coefficientshave the same form asthosefrom theas solutionwith the parameter blreplaced

with b2.

In two dimensions the problem is less complicated since the number of tensor products necessary

to express the solution is vastly reduced. In this case S,_,R are two dimensional tensors as

the mean quantities are 2-D. First it is necessary to recast the tensorial equation in terms of the

proper trace]ess 2-D tensors, that is _Sij((u)) Sij((u)) 1Spp((u>)(_} ), --ij(P,'P) Rij('fi,_)

½app(},_)_}j_).'-Here,the twodimensionalKro,eckersymbolis _(:)_--[_i_)]-=, fori = j = _,2 and
0 otherwise. The pressure strain model becomes:

[ 2S. ][i Ca xM_]+

2[1-C3+xM2][aiP(_ 3 (_m(2)) -12 _apq(_ q 6;,(2))6ij]Spp((u))]BrF_. (42)

It is important to stress the fact the both expressions (2-D and 3-D) of the pressure-strain correlation

model give the same result when applied to a two dimensional mean flow. The recasting is necessary

to take advantage of the simplifying properties of this particular case. Also,

(43)

Using the previousinformationthe finM equation becomes:

withbl = -_-B_F_(_+ 55x,Mt7 ,2,), b2 = _Sruuo,_: b3 = 1-B_F_(1-C3+xM_),b4 = 1-B_F_(1-

C_ -xM_), bs = b_Sp_ + b2Rpp, b6 = baS_p and g having the same expression as in the 3-D algebraic

equation. The polynomiM solution a = _\ CXT _ is based on only five independent tensors

T °- T' =_S*, T: =S*fI-_{S*) T 3 =R*, T 4 =R*fl-fl R* (4.5)
3 2 ....
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and five non-zero independent invariants:

a2={S'2}, _y2={ft2}, {R*2}, {_R'S*}, {S*_.R*_}. (46)

The assertion that there are no other independent tensor products or invariants can be verified

using the following 2 x 2 matrix identity:

2abc = bc{a} + a{bc} + ac{b} - b{ac} + ab{c) + c{ab} -

c{a}{b} - a{b}{c) + ({ac){b} - {acb})_ (2). (47)

To obtain the explicit solution to the algebraic equation in the anisotropic Reynolds stress a pro-

cedure similar to one devised by Pope) s We define the matrices 5 x 5 T/_, ff_, 2_ such that

TvS*_ +_S*T v-2{TvS*}/5=_nvT:_
A

T,fl" _ _*T n = _ -7_ T_
A

- 2, T. (48)
A

The elements of the matrices are determined from the above equations by making use of matrix rela-

tions stemming from the Cayley-Hamilton theorem. Next, the coefficients of the tensor po]ynomial

are obtained from

• ]C)_ = --gT bl(_lA + b2(_3,\ + b3EC__ - b4EC'_J; - b5_o,\- D6EC_-._ • (49)

The resulting model for the anisotropy of the Reynolds stress tensor is:

a = -2Cur [_2S* + (Ql + Q3)b3gf2ra2 (_ - iS(2)) + Q2b4gflv(S*_ - _ S*)]

-2C'.T [R* + b4gflv(R*_t - n R*)] (50)

The parameters Cu and C_ are given by:

blgA/2

C. = 1 - 2(b3gra)2flf2 - 2(b49far_v) 2
3

(51)

and

b2gfl/2

Clu = 1 - 2(b4gAr_) 2

[{__s-_R*}

(52)

(53)
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2 (b3gra)2flf2 b3b_.

Q_= 1+ 32 -_)2(e, - 1)- 5_-gj_,

Q3 ----
bs 1 - 2(b4gflr:_)2

bj b3 2g fl ra 2

with fl = (1 + b6gr/6) -1 and f2 = (1 - b6gr/6) -_.

2.3.2 ATFM

(54)

(55)

The temperature flux transport equation reads:

O_(<'T")
+

at

,aT" (<_]u':)O<T>+P _ - P ' Oxj

0 . ,,0T]

f, ,,_,,,o<,,j
-(._- 1)_t,_,,,.,,_--g_-.

O-fi(u[T")(uj) O("fi<ujuiT ) + p T 6ij - T"aji(u"))

Oxj Oxj

l(< ti[l_yp

. o< O<T> . O< Or" aT"
PrRe Ox] Ox a aji(u")

+

Pr Re Ox j Ox ¢

+ (T) _ O_j /
(56)

Modeling of T" (following the methodology used by Ristorcelli 4r in deriving a model for u i ). From

the instantaneous the mean is subtracted:

-_(pT - p(T>) + (pTuj - 7)(T}<u)))= RHS : _ PrRe Oz¢

-7(7 ....1)M2 tp_]xj p_-_x3)+ 7(7 1)M2taO(u)-_x _ aij(u)-_xj)+ 3'Ce(£'p - &--p).
(57)

Obviously RHS = 0. After expanding the differences on the left hand side, the terms are expressed

in non-conservative form and the resulting equation is divided by the instantaneous density. After

using the approximation lip = (1 - P'/'6 + ...)/-P the equation is averaged and the terms of order

_> _p,2/_ are eliminated. For example, the difference term <<T")-<T" = p'<T"/-_ ~ O(v_p'_/-_)
is discarded. This results in:

DT "-T Ou] ,,-j_ + {u]T") 8-fiD---_ = T" Oz j --fi Ox j
(5S)

Precedent contributors 49' 4r have represented the term correlating fluctuating divergence with veloc-

ity fluctuation by a linear relaxation model. Because both the divergence-temperature correlation
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andT" are scalars the following relation is valid on dimensional grounds:

T"Ouj = ---'_ (59)
Oxj rd

where rd = Mt r is the acoustic time scale. Next, assuming that the quantity T-_/_ reaches a

near-asymptotic state we have

DT" _ -co

where P_ is the production of temperature variance. Combining the the equations 58, 59, 60 the

following expression is obtained:

where rt = Mtr/[1 + _Mt(Po/(-P 70) - 1)]. Similar to the treatment of the Reynolds stress,

the temperature flux equation is transformed into the equation for the correlation coefficient

<= {u_r") (62)

_/(k}iT":) '

and the transport equation reads

P Dt - k/(k}(T"2 > \_xj 2 V(T_-2> Ozj -2 V _ -_xj)

-_[(T,,2} p_ 1 + _rr _--_ 1+ __P (s

1
4 [Pie + e_io - "PLo], (63)

_/(k}(T ''2i

where the notation D/Dt indicates tile convective transport, T_, Tf and Tj denote turbulent

transports of the temperature flux, the temperature variance and the kinetic energy, respectively.

Moreover Pt9 = -_,/(k)(T"2)vgjO(T)li)xj is the production of temperature variance and tile remain-

ing quantities are the normalized production, pressure-gradient correlation and flux dissipation:

1.]-_2ifij) + Ojo(Si3((u)) + Ftij((u))) + -_OWSkk((u)) (64)Pi0 = -v.k,.T"2, (k)(au +

The pressure-temperature gradient model

¢_- _ _,,_= .& + 2_jk(&_((_>) + ajk(<,.,>) (65)
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The linear nature of the temperature equations imposes that the integrals 2"ijk as well as the vector

,Ai be linear in the turbulent flux. Therefore

Zijk
Ai = -Clo-P -_t_i

1316ij_k + 132(6ikvqj + 6ikOj) + flaijv_k + f2(aik@j + aikl,_j) + fa6ijakpt?p (66)

The symmetry constraints are satisfied for the above form for Zijk. To determine the coefficients

more constraints are applied: the normalization condition which translates into Ziij = (u_'T").

The incompressibility condition is replaced with :Zikk/¢(k)(T ''2) = (M_/2(Oi + alkOk), where the

constant ( has to be calibrated from DNS. These conditions are still insufficient for the deter-

mination of the constants fl, f2, f3. These coefficients were chosen so that Zijk proposed by

SLC89 is recovered in the incompressible limit. Realizability criteria is based now on the tensor

djk = (<u]T"}<u_T") - (u]u_>(T"2>)/(<u_T"}<u'pT ") - 2<k)<T"2)) and the linear function of the in-

variants of dj_ FD = 9/2- 27d2j/2 + 9d3j, IId is the second invariant of tile tensor djk, d_j = djtdlj

and d3j = djldtmdmj.

,.)

r(u;T").Ae - <T"_>(Aeo- _ _1+ 2-__(_) = Cr_

O<uP>((T"2)Zwq_ - <u:T")Z_pq)-_ 0
OXq

as FD --0

as FD _ 0 (67)

_r [(ca + * -Oi_ -CI_-f-_v_,_A_F_ +fi c2)So((u))O._o + (cl c2)flij((u})v_jo
¢(k) (r ''_ }

+(_ + c_)_,jS;k((_))_k_+ _a_kS_((_))_k_+ (_3- c_)_fijk((_)),_k0

(68)

where C,,_ = 3.2, 0 = 4/5 - (M?/5, c2 = -1/5 + 3(M_/10, c3 = 1/10 + (M_/2, c4 = -3/10 +

3(M_/2, c5 = 1/5- (M_. The parameters are c_ = 0.1, _3r = 0.5, A_ = min(FD _, 0.1 -°_)

and B_ = min(F/_ _, 0.1-Zr). The coupling between the species and temperature reflected in the

temperature flux equation for the reacting case with heat release is neglected for simplification

purposes. Using all the present information the equation for _ is:

+D_Ad+Co =0

where the coefficient D,_ = 2rho, with

[ f---1W(1W2c4B_f_o_)_Wro(P--_o 1)+ho = 2A_F_C_%

-_-(12r_ ), M _ B_ F_D_)Spp ( (u ) ) + .M + -fi __P'--d- -p _ ] -' ,

(69)

(70)
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wherere = 2(k)(-_/(-_s(T"_))is the time scalesratio. Thevectorterm reads:

D / (k) 2 b:.,U,k] O(T)C,,_= oV(-V_)["_'+ -5_' - Ox_" (71)

Due to the nonsymmetric properties of the second order tensor A an anisotropic turbulent diffusivity

tensor will be obtained in the final model.

Aik= A_k + _--_n,krt = [1 .... (cl +c2)B,.F_Dr]STk((u))+[1 @1 c2)B,-F_D"]_ik((u))

[(c3 + c4)aijSj_( (u) ) + csakjS_i( (u) ) + (c3 - c4)aiji)jk( iu) ) - csakj_ji( (u) )

Now, the solution of the system is conveniently represented in the matrix form:

(72)

_e = -M-1Ce (73)

where M denotes the matrix [_ + D9A].

To provide a computationally efficient algorithm, the matrix M is inverted analytically. This is

achieved via the use of the Cayley-tIamilton theorem and yields an expansion on the minimal

vectorial basis for this problem:
2

_ = Z anAnC'9 (74)
n----O

2.3.3 ASFM

The methodology used for the telnperature flux is now applied to the scalar flux which is transported

according to the equation:

Ot Oxj

o r. I

+ o_(_,_o)(_j) ___ 0(_(_j.,_Y2) + p'K,5,j - Y'2o_,(_))
Oxj

+ _o.._@,,)) + ,,,_.

_, o7, o0;) I1 o,£ 0Y2 oF2
ScRe Ozj Oxj ScRe Ozj Oxj aji(u") Ox.7

(75)

where the reaction source term can be approximated by:

, [(1u :v_ =-Daexp -Ze (T) (76)
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The modelderivationsleadingto expressionsfor the averagedFavr_fluctuations,pressurescalar
gradientcorrelationare identicalwith the onespresentedfor the temperaturerelatedquantities.
ForY_' we have:

-- ( .... az (77)

where vs = Mtr/[1 + _Mt(Pc,/(fi -_) - 1)]. The correlation coefficient

(78)

evolves according to

P Dt q(k)<y_'2) Oxj 2 V(_)Oxj 2 -_xj]

- )]1+ So _ + _i_ P M + Y + p'd--p _
p o--i 1+ __ +

I i

s pes

1

ff(k><y:?)
(79)

where the notation is similar to the temperature flux case, for example

Po = -q<k)(Y_'2)_2jc_O<}'_)/Oxj is the production of scalar variance. The terms that appear extra

with respect with the previous case are due to the reaction source term and they are: S_ = (&aYe')

which is the chemical source term in the <}.,_2) equation and similarly for the flux equation,

1

Sio = -Da q(k)(},_,2)(_io(Y2)+ _,_(}_)+ 7,_/3 (_'2)). (80)

Here 7,_ = is the normalized covariance flux vector. It is worth
i

mentioning that for the pressure scalar gradient model the realizability is based on the tensor

djk = ((u_Y<_'){u_Y_')- (u_u_)(Y[_'2))l((u_Y£)(u_Y[_ ') - 2(k)(Y[_'2)). The final form of the model is

the same as for the pressure temperature gradient model, replacing the temperature flux with the

scalar flux along with the appropriate normalization. This procedure leads to an algebraic system

of equations for the two unknown vectors _i_ and _n. For the mixing case the two vectors are

uncoupled and the solution is matricially the same as the temperature flux. The reacting can be

solved exact, but due to chemical coupling the solution will be too complicated to be of practical

use. Therefore either the mixing solution can be utilized or a perturbation solution of the react-

ing case, the small parameter E = rtl-p 2. The fluxes are decomposed as _2,, = cP°o + E_!<_ and
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_iZ = _2°_ + E_Z. The solution is obtained from the system of equations

{ ¢2_ + Do(A' + eT¢)_ + Bo¢2_ + C_ = 0_3 + D_(A' + eTd)_ + B_ + C 3 = 0

where the coefficients are

And the vector terms read:

2rh_

1

c,o= DoIV + 5 - *

(81)

(82)

(83)

The terms indexed with fl are obtained from the a indexed terms by the permutations a ---, fl and

fl ---, a where necessary. The parameters ha and h z have the same form as h0 (Eq. (70)) with the

respective change of index. The solution of the system (81) given in matrix form:

{ _o° = -M-' [(6 + D_A)Co - B_Cz]_ = -M -1 [(6 + DoA)C z - BzCo]
(84)

¢2o1= -M -1 [(_+ D3A)Do_ 0 - BoD3_ ]_1 -M -1 05 + DoA)D_ B_Doi"_¢_J (85)

where M denotes the matrix [(1 - BoBa)6 + (Do + D_)A + DoD_A2]. Using the methods men-

tioned in the temperature flux section and described below results:

2 2
" n

n=O n=0

2.3.4 Explicit Solution

The procedure leading to explicit solutions for the turbulent fluxes vector is described. Consider an

arbitrary three-dimensional second-order tensor Q - [Qo] and the corresponding Kronecker tensor

- [b,j]. According to the Cayley-Hamilton theorem, this matrix satisfies its own characteristic

polynomial:

Q3 _ IQQ2 + IIQQ - IIIQ_ = 0 (87)
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whereIQ = {Q} : Q,,,IIQ = _[{Q}2_{Q2}] = I[Q,Qjj_QijQji],IIIQ = __[{q}3_3{q}{q2}+

2{Q3}] = _[QiiQjjQkk - 3QiiQjkQkj + 2QijQjkQki] are the three tensorial invariants. Multiplying

the characteristic polynomial with Q-1 and solving for the inverse we obtain:

Q-1 _ 1 (q2 _ IQq + II#,5). (88)
IIIQ

This relation can be used now to find explicit solutions to the problem considered here. We can

write:

_,_ = -(_ + G)-IC. (89)

Hence:

(_ -t- G) -1 - 1 [G 2 + (2 - I_+G)G + (1 -/$+G %/I6+G)b] • (90)
III_+G

It is easy to show that IS+G = IG+{6}, II6+G = 2IG+IIG+{_}, III6+G = IG+IIG+IIIG+_J_3"

Therefore the normalized turbulent flux vector takes the form:

_a = aoC + alGC + a2G_C (91)

with the coefficients:
I + I G + lI G

ao = (92)
1 + IG + IIG + IIIG

al = 1 + I G (93)
1 +I G +II G+IIIG

1

as =-1+i G + II G + III G" (94)

The reacting case is somewhat more complex. Nevertheless, by following the same procedure

explicit solutions are obtained:

! !_a = aoCa + aoC _ + alACa + alAC _ + a2A2Co + a_A2CB

! 2
_Z = b0C_ + b_)Cz + blACo + b'IAC _ + b_A2Co + b_A CZ,

with the coefficients:

(95)

(96)

i 3

ao = - (a - BoB )(F F - E:,oB ) '
(97)

!
a 0 = Bo

Fo(F_+_n2{A3)'3 '+ Do AL_)-_( D'_F_ - ED_) - EB,_B_(E + A:L_D_,Df_)

(1 - B_B_)(F_,F_ - E2B_B_)
(98)
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B_,B_ [E(D_ - D,,) + F,_D_] - D_,F_

al = D_(F,_F_ - E2B_Bz)

, B,_ DoFt3 - D_F,_ - E(D_ - D_,BoB_)

(99)

(100)

DoF_ - ED_Bc, B:_

a2 = F_F_ - E2B,_B_
(101)

with the shorthand notations:

!

a 2 = -Ba
D_,F_ - ED_

F,_F_ - E2B,_B_ '
(ao2)

F_ = (1 - B_Bz)(Do

F_ = (1 - BoB;: )( D_--

{A 2} 1 BoBz ) _ D_ {A3} (103)
2 Do Dt_ 3

{A 2} 1 B_Bz ) {A 3} (104)

1 1

E = (_-£ + _T){1 - B_,Bz) - D_Dz{A3}3 (105)

The coefficients bi are obtained from the ai's through tile permutations a --, 13,/3 _ o, a0 ---, b_),

' bl a2 b_ and ' --" b2.a o' --, bo, al _b_,a 1---, , ---, a 2

2.4 Results and Conclusion

The theory built in previous chapters will be used to simulate numerically a non-premixed, tur-

bulent reacting with heat release, spatially developing mixing layer over a wide range of Mach

numbers. The simulations are performed on a uniform grid in the computationM space. By means

of a coordinate transformation the mesh is transversally compressed in the physical space in the

region corresponding to the actual mixing layer and the equations are solved in vector form. The

numerical solution procedure for the integration of the governing equations is based on a Gottlieb-

Turkel predictor-corrector finite difference scheme. 5° The method has dissipative properties and it

is second-order accurate in time and fourth-order accurate in space. The interest at the present

time lies in the steady-state solution and therefore, to accelerate the convergence towards steadi-

ness, a local time stepping technique is used. The convergence criteria is imposed to be that the

reduction of the steady-state residual in average sense attains a minimum acceptable level. More

specifically, the simulation is considered at steady-state when is observed at least a 1.5 order of
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magnitude reduction of a global quantity, such as the absolute value of the residual averaged over

the whole domain. Figure 2.1 shows a typical evolution for the the previously mentioned quantity

obtained with the Gottlieb-Turkel scheme. Although the criteria is quite stringent it is known sl

that predictor-corrector type of schemes are not able to achieve better rates of residual reduction.

The set of initial conditions is obtained by propagating the inflow conditions throughout the entire

domain, hence, in this procedure, the flow has to sweep at least one time the domain to obtain a

meaningful result. The boundary conditions are set according to the elliptic nature of the problem

on all four boundaries. The inflow BC specifies smoothed step or smoothed hat profiles for the

primary variables. At the outflow and outer boundaries zero gradient boundary conditions are

applied for their nonreflective properties in relation with the outgoing waves. The grid overlay-

ing the computational domain of 120_ × 60_ had 128 × 64 points, where the vorticity thickness

_,o = (ul - u2)/(Ou/Oy)m_x. In the first stage of this work we have concentrated mainly on hy-

drodynamics. Test simulations were performed with simplified versions of the algebraic model for

the Reynolds stresses. The particular set of conditions for the two streams of air were a prescribed

velocity ratio rv = 1/4 and equal thermodynamic properties. The issue of reduced spreading rate

of the shear layers with increasing free stream Mach number is well established experimentally.

The compressibility effects parameter called convective Mach number correlates with the growth

rate normalized by its incompressible value at the same ratios for velocity and density s2 and had

the expression in this case Mc = M (1 - rv)/2. The fully developed shear layer at high Reynolds

numbers grows linearly and the spreading rate can be expressed as dt_,/dx = C_(1 - rv)/(1 + rv)

where/_ = _(x) is the thickness of the shear layer based on the normalized velocity profile and C6

is constant (approximatively). Figure 2.2 represents the downstream-evolution of the shear-layer

width. The linear growth is attained after a phase of development near the inlet. The confirmation

that a fully developed regime with linear growth has been installed in the flow, stems from the

self-similar property of the velocity profiles and normalized Reynolds stresses. As it can be seen

from figures 2.3, 2.4, 2.5 the profiles, plotted in similarity coordinates, collapse for each axial co-

ordinate considered in the outflow region of the domain. The temperature profile shows the same

self-similar behavior as the other mentioned quantities and as a result of the velocity gradients

displays an increase in the middle of the layer. The correlation profile of the normalized C6 versus

Mc has yet to be completed. The simulations will be continued with the full set of algebraic models

and tests will be made for the entire range of interest of convective Mach number.

The purpose of the efforts in this part of our activities was to develop closures for the "second order

moments" in the contexts of both RANS and LES of high speed turbulent flows. In particular,

we have obtained a complete set of explicit a]gebraic models derived from a hierarchy of second-

order moment closures that are valid for compressible turbulent flows. The primary methodology

based on the Cayley-Hamilton theorem and its corrolaries was developed during the past twenty

years 1s'19'1 and the present work extends it further. The models are based on new compressible

closures for the pressure-strain and pressure-scalar gradient correlations. Explicit algebraic relations

are provided for the Reynolds stresses, velocity-temperature and velocity-scalar correlations in both
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non-reactingand reactingflowswith heatrelease.As theoreticalnoveltywementionthat density
gradient,pressuregradientand meandilatation effectsareincludedin the models.Also, the role
of the turbulent Machnumberand DamkShlernumberis exhibitedaswell ascompressibilityand
variableinertiaeffectsfor applicationof themodelsto turbulent flowswith nonpremixedreactants.

3 Monte Carlo Large Eddy Simulation of Reacting Turbulent

Flows

3.1 Introduction

The purpose of the efforts in this part of our activities is to develop and implement a robust

computational procedure for LES of turbulent reactive flows. The procedure is based on a Monte

Carlo solver for the Probability Density Function (PDF) of Subgrid Scale (SGS) of reactive species.

The purpose of the efforts described in this report is to develop and implement a robust compu-

tational procedure for Large Eddy Simulations (LES) capable of capturing the intricate physics

associated with turbulent reactive flowfields. LES is considered somewhere between Direct Numer-

ical Simulation (DNS) and Reynolds Averaged Navier-Stokes (RANS) computation. 53-ss'll's9 Over

the past thirty years since the early work of Smagorinsky 6° there has been relatively little effort,

compared to that in RANS calculations, to make full use of LES for engineering applications. The

most prominent model has been the Smagorinsky eddy viscosity based closure which relates the

unknown subgrid scale (SGS) Reynolds stresses to the local large scale rate of flow strain. This

viscosity is aimed to provide the role of mimicking the dissipative behavior of the unresolved small

scales. The extensions to 'dynamic' models 61-64 has shown some improvements. This is particu-

larly the case in transitional flow simulations where the dynamic evolutions of the empirical model

'constant' result in (somewhat) better predictions of the large scale flow features.

A survey of combustion literature reveals relatively little work in LES of chemically reacting turbu-

lent flows, s5'65 It appears that Schumann 66 was one of the first to conduct LES of a reacting flow.

However, the assumption made in his work simply to "neglect" the contribution of the SGS scalar

fluctuations to the filtered reaction rate is debatable. The importance of such fluctuations is well

recognized in RAN S of reacting flows in both combustion TM 15,11,17 and chemical engineering 67-7°

problems. Therefore, it is natural to expect that these fluctuations will also have a significant

influence in LES.

Modeling of scalar fluctuations in RANS has been the study of intense investigations since the

pioneering work of Toot. 71 The aim of statistical moment methods is to provide a closure for

these correlations in terms of mean flow variables. Because of the lack of models with universal

applicability to accurately predict the scalar correlations in turbulent reactive flows, simulations

involving turbulent combustion are often met with a degree of skepticism. Another approach which
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has proven particularly useful is based on the Probability Density Function (PDF) or joint PDF

of scalar quantities. 72'ss'73 This approach offers the advantage that all the statistical information

pertaining to the scalar field is embedded within the PDF. Because of their capabilities, PDF

methods have been widely used in RANS for a variety of reacting systems (see DopazJ 3 for a recent

review). A systematic approach for determining the PDF is by means of solving the transport

equation governing its evolution. TM In this equation the effects of chemical reaction appear in a

closed form. However, modeling is needed to account for transport of the PDF in the domain of the

random variables. In addition, there is an extra dimensionality associated with the composition

domain which must be treated. An alternative approach is based on assumed methods. In these

methods the shape of the PDF is assumed a priori usually in terms of low order moments of the

random variable(s). Obviously, this method is ad hoc but it offers more flexibility than the first

approach. Presently the use of assumed methods in RANS is justified in cases where there is strong

evidence that the PDF assumes a particular distribution, rS-_7

Despite the demonstrated capabilities of PDF methods in RANS, their use in LES is limited, ss'7s's9

The first application of PDF-LES is due to Madnia and Givi 7s in which the assumed Pearson family

of PDF's are used for modeling of the SGS reactant conversion rate in homogenous flows under

chemical equilibrium conditions. This very same procedure was also used by CR 79 in the LES of a

similar flow. The extension of the model for LES of nonequilibrium reacting flows is reported by

Frankel et al. 3 for LES of reacting shear flows. \Vhile the generated results are encouraging, they

do point out the drawbacks of assumed PDF methods. These can be overcome only by considering

the PDF transport directly.

The approach advocated here is to solve the transport equation for the PDF. Because of the added

dimensionality due to the compositional variables, solution of the PDF transport equation by

conventional numerical methods is possible in only the simplest of cases, s° An analysis performed

by Pope sl suggests that the solution of the joint velocity-scalar PDF by finite difference methods

is impractical for more that three scalars.

The numerical solution of the subgrid PDF may be accomplished by means of a "Monte Carlo"

scheme. The use of such schemes in RANS has proven very effective, 72 however no attempt has

ever been made to utilize Monte Carlo schemes in the context of LES. Two classes of Monte Carlo

schemes exist. In the Eulerian type scheme, the PDF within the subgrid is represented by an

ensemble of M computational elements at fixed grid points. These elements are "transported" in

physical space by the combined actions of large scale convection and diffusion (molecular and sub-

grid eddy). In addition, transport in compositional space occurs due to the processes of chemical

reaction and molecular mixing. Preliminary implementation of an Eulerian Monte Carlo method

for LES of a non-reacting mixing layer has been performed in unpublished work. The Smagorinsky

closure was used for the modeling of the subgrid eddy diffusion and the stochastic model of Curl 82

was utilized for modeling of the molecular mixing. Unfortunately, the results were quite discour-

aging. The major difficulty with this formulation lies in the numerical implementation of the large
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scale convection. Due to the nature of the grid based scheme, excessive artificial diffusion is created

which greatly degrades the solution of the large scale structures. It is important to realize that

the errors induced by this scheme are not at all due to the PDF formulation itself but rather to

the numerical implementation of the closed mean convection term. A remedy for the problem is to

divorce from the Eulerian discretization and to invoke the Monte Carlo solver for the LES-PDF in

a "grid free" Lagrangian manner.

In this work we provide a computational methodology for solution of the PDF of SGS scalar

variables in LES of reacting flows under nonequilibrium chemical conditions. The solution procedure

involves the transport of N Lagrangian elements within the "whole" computational domain of

interest. The advantages of Lagrangian numerical procedures in reducing numerical diffusion in

DNS are well-recognized. 83-s6 In this Lagrangian framework, the elements are free to move anywhere

within the domain. The particles carry information pertaining to the scalar field only; the LES

of hydrodynamic variables is conducted by conventional Eulerian finite difference procedures. The

effects of convection and diffusion are to move the elements in physical space, while the effects of

mixing and reaction are to modify the compositional makeup of the elements.

3.2 Governing Equations

The primary independent transport variables in a compressible, two-dimensional flow undergoing

chemical reaction are the density p, the velocity vector ui, the total specific energy E, the pressure p,

the temperature T, and the species mass fractions fo (a = 1,2, ..., N_). The conservation equations

governing these variables are the continuity, momentum and species mass fraction equations, along

with an equation of state relating thernmdynamic variables. They are expressed as:

Continuity :

Conservation of momentum :

Conservation of total energy :

Op Opui

0--7+ Ox, - o (lO6)

Opuj Opuiuj Orij
Ol + Oxi - Oxi (107)

OD___EE+ Op_liE _ Orijuj Oqi (108)
Ot Ox, Oxi Oxi

Conservation of chemical species :

oMo
ot

Opuif_ OJg
-- + Ozi Oxi + d2o (109)
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Equation of state :

The total specific energy is given by :

Nj

p = pR°T _ fi/Mi
iml

(110)

Ns _ _t 2 .gt_ V 2
E = _-_ h,f, - p +

_=1 p 2
(111)

and the enthalpy of species i is defined as

hi = h° + cv,(T')dT' (112)

Additionally, the viscous stress tensor r0, heat flux qi and mass flux J/_ of chemical species a are

given as:

, Oui Ouj Ouk (113)
,-,j=  ,jp + t,t + )+ ,5,j -gGx

k OTqi = - "-- (114)
oqxi

Of_ (115)
J_ = -pD Oxi

3.2.1 Modeling of Unresolved Scales

Tlle a ero-thermodynamic equations of the previous section constitute a complete set of governing

equations. Unfortunately, due to the limited power of today's computers, it is impossible to accu-

rately solve these equations for typical engineering problems. The great variation in length scales

would require grid resolutions that would be too prohibitive for even the fastest of today's super-

computers. RANS provides the engineer with an alternative; instead of obtaining a fully resolved

solution which can be afforded in only limited cases, time averaged solutions which do not attempt

to resolve the the fine structure of the turbulence could be attempted. Due to the non-linear nature

of the equations, the time averaging procedurc yields unclosed terms which have been the focus of

much attention in the past. On the other hand it may be desirable to resolve some of the lower

frequency turbulent structures. Instead of averaging over all time (and implicitly length) scales,

LES attempts to resolve the larger, energy containing eddies. Because only the finer turbulent

structure is modeled, it is expected that LES models would be more universal in application. This

is accomplished by use of a local spatial filter:

+c¢(_(x, t) = ¢(x, t)G(x' - x)dx' (116)
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The fluctuationabout the filteredvalueis givenby

¢' = ¢-7. (117)

The filter G(x) can take many forms. In this work we have elected to work with a local volume

average box filter. For compressible flows, it is desirable to work with Fay% averages:

= _----PC (118)
P

and the fluctuation about this nlean is denoted by

O"= ¢- ¢. (119)

For compressible flows with reaction it is convenient to work with the density weighted mass fraction

.Yo= pf_/_ (120)

so that _o = f_. Note that while

fo = 1, (121)
k=l

N,

E _ = P/P# x. (122)
k=l

When the LES Favr_ averaging procedure is applied to the governing transport equations, tile result

is:
0_ Opi_i
0--[+ Ozi - 0

0Fii_ O-fiT_i_j O_ij 8T, j
-- "JV

Ot Ozi Ozi Ozi

-- ..1F

Ot 0a:i Oxi Oxi Oxi

__ o-f_,L 07'; oM_ ._L + _ +_o
Ot Oxi Ozi Oxi

where

(123)

(124)

(125)

(126)

r,j = F(uT_: - _, aj )

M7 = -_(,,,.-7o- _,L )

(127)

(128)

(129)

are unclosed terms and therefore a model must be provided to account for their effects.

In this preliminary work, which is restricted to no heat release and low compressibility, tile in-
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compressible Smagorinsky eddy viscosity subgrid model is employed. The use of an incompressible

model is justified in lieu of the fact that the density variations are expected to be quite small. Using

this formulation, the SGS stresses are given by:

Tij - (3ij/3)Tkk = -2ptSij. (130)

where Sjl is the large scale strain rate tensor. A similar eddy viscosity formulation is used to close

the SGS heat and mass fluxes:

Q_- Prt cgx,' (131)

Set Oxi (132)

The Smagorinsky eddy viscosity is given by:

l_,= pCSA 21SI. (133)

where ISI = _ and A is the filterwidth. In this work, the constants Cs, Prt and Sct are

set to the values 0.010,0.7 and 0.7, respectively.

Thus far we have not yet addressed the issue of how to deal with SGS scalar correlationsin the

filteredchemical source terms. While the SGS terms discussed in this section are of a convective

nature and they can be reasonably well modeled by a diffusiveprocess, the same cannot be said

for the unclosed terms in the species production rates. Because the physical mechanism of the

SGS stresses and fluxes isinherently differentfrom the scalar correlations in the source terms, it

isexpected that the models wi}}differ.In fact,when eddy viscosityconcepts are extended to treat

chemical source terms, the resulting models ("eddy break up models") perform mediocre at best.

The focus of the following sections isto discuss how the methodology of LES via PDF (hereinafter

refereed to as LES-PDF) isused to overcome the closure problem of the chemical source terms and

to develop robust numerical methods fox"the simulation of turbulent reactive flows.

3.3 PDF Methodology

The most common approach to turbulent reactive flow problems in the past has been to solve

the governing transport equations for the Favr6 averaged flow variables. As a consequence of the

averaging process, unclosed terms appear and must be modeled. This type of methodology is

referred to as moment closure methods as closures must be provided for the unknown correlations.

An alternate approach is consider the joint PDF of scalar quantities rather than to directly solve

the scalar transport equations directly. Once tile joint PDF is known, all statistical quantities
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involving the scalar variables can be determined. The average species production rate _ can then

be determined since it is dependent on such scalar correlations. The natural starting point for the

consideration of PDF methods is to examine the transport equation governing its evolution. First,

however, it is convenient to discuss some preliminaries. The following is intended only as a brief

review and is by no means complete. For further information the reader is encouraged to consult

one of the many fine texts on stochastic analysis such as those by Schuss s7 and Papoulis ss and

BiUingsly. s9 An excellent reference of PDF methods in the application to turbulent reactive flows

is provided by Pope. 72

3.3.1 The Probability Distribution Function

Let ¢(x,t) be a random variable. The possible values that can be assumed by 4) constitute the

sample space. In general the sample space may consist of all of the real numbers, but further

physical restrictions may restrict allowable values to a subset of the real numbers. For example,

the thermodynamic temperature T can only take on non-negative values. If we regard T as a

random variable, the sample space of T consists of all the non-negative real numbers. In a similar

manner the sample space for the mass fraction of any species consists of all the real numbers from

0tol.

The probability distribution function (also commonly referred to as the Cumulative Distribution

Function or CDF) is defined for a continuous random variable ¢ by:

r¢(e)= P{¢ < e}, (134)

where P{A} is the probability that the event A occurs. The probability of an impossible event is

zero, while the probability of a certain event is unity. Some fundamental properties of CDF's are

= P{¢ _<-oo} = 0, (135)

= P{¢ < +oc} = 1, (136)

OF¢ > 0. (137)
0¢ -

The last requirement merely states that tile CDF is a non-decreasing function.

The probability distribution function is useful because we can use it to determine the likelihood

that a random variable will fall between two values. For example, the probability that the random

variable ¢ will fall between tile values t9_ and _'b is given by

P{_'_ < 0 _< V'b} = F+(g_) - F¢(g'b). (13s)
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3.3.2 The Probability Density Function

The PDF is defined to be the derivative of the CDF:

f¢(_,)_ dF¢(0)
dO (139)

The PDF, like the CDF, is useful for determining the probability that a random variable falls

between two values. Upon integrating Eq. (139) between Ca and 0b the following is obtained:

F¢(_ba) - F¢(g,b) = /+5 f¢(0)d_b (140)P{0_ < ¢ _<Cb}

Over a small interval fcAg, is an approximation to P{¢ < ¢ < _ + A0} = AF¢ and in the

limit f+(O)dO represents the differential probability dF¢ that the random variable ¢ lies in the

infinitesimal interval of width dz/, in the vicinity of V).

Some fundamental properties of the PDF are

f¢(g,) > O, (141)

f¢(-_) = O, (142)

f¢(+oc) = 0, (143)

/__= f¢(g,)d_., = 1. (144)
o(a

3.3.3 Deternaination of Mean Values from the PDF

Let A(¢) be a function of the random variable 4). In general, the expected or mean value of A(¢),

denoted by A(¢) or <14(¢)> is given by the expression:

A(¢) = <A(¢)> = A(_))f¢(O)dg,. (145)

iFrom this equation the PDF can be regarded as a normalized weighing function that assigns

various weights to each possible outcome in the sample space. The integration serves to sum over

each of these weighted possibilities to yield the expected value. The term ensemble at,erage is also

used to denote the mean.

In particular, the mean value of the random variable ¢ is simply

= [+_ _,fc(z6)d_,, (146)
J-,>_
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andthe n th central moment is given by

= <(¢ - =/_+5(¢ -

For example, the second central moment, or variance is given by

p2 = a2 = <(¢ - _)2> = _ -_)2f¢(g,)de"

(147)

(148)

The variance represents the mean value of the square of the fluctuation and is useful in determining

how a random variable fluctuates about the mean. A random variable with a large variance deviates

more about the mean compared to a random variable with a smMler variance. The square root of

the variance is called the standard deviation and is denoted by the greek letter a.

In PDF methods, it is often useful to express the PDF as the mean value of the delta function:

fA_") = <_(V' - ¢)>. (149)

The delta function $(_ - 4') is commonly referred to as the fine grained PDF. Each fine grained

PDF _(0 - ¢) corresponds to a realization from the sample space with the fine grain value ¢ = _.

This utilization of the delta function is important when we extend the concept of PDF's to spatially

filtered quantities.

3.3.4 Functions of More Than One Random Variable

Up to the present point functions of only one random variable have been addressed. The corre-

sponding PDF's are referred to as uT_ivariate since they only depend on one random variable. Many

situations, however, require the use of functions that depend on more than one random variable.

The distributions associated with such random variables are referred to as joint or multivariate. For

example, the reaction rate of a chemical species generally depends upon multiple scalar quantities

such as several species mass fi'actions _ (c_ = 1,2 ..... N_) and the temperature T. Denote ¢,_ = -_n

for n = 1,2,..., N_ and ON, = T where N O = N_ + 1 so that ¢ is a random vector of dimension N¢.

The reaction rate of species c_, _'_ is

,_o = 5.'_(0) = _(¢, ,_2, ..., ONe). (150)

Notice that the sample space is a N o dimensional hypervolume. Each point within this hypervolume

represents a possible composition. Some of these outcomes are more likely than others while others

may not be possible at all. A multivariate PDF is useful for characterizing the entire statistical

behavior of the random field. To introduce the concept of a multivariate distribution, we begin

with a bivariate distribution which involves two random variables. Extension to higher dimension

PDF's is inductive.
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Let ¢1 and ¢2 be two independent random variables.

given by

F¢,¢2(¢1,_/'2) = P{¢1 < ')1,¢2 < ')2},

and the bivariate PDF is given by

0 2

f_( _, _2) - o_,o¢2F_,e,_(')l, ,)2).

The distribution function F¢1¢2(')1 ,')2) is

The univariate PDF of ¢1 may' be obtained by integrating the multivariate PDF once:

f¢1(')1) = V _ f¢,c_(')l,')2)d@2.

Similarly,

(151)

(152)

(153)

f¢2(1_'2) = J__ f¢l¢2(')l,')2)d¢l. (154)

Some additional properties of bivariate CDF's and PDF's are:

F¢, ( ")1) = F¢1¢2 ( "), , +o0 ), (155)

F+:(')2) = r¢l¢2(+m,')_), (156)

F¢_+2(-_, W2) = F¢,®2( ')a, -_ ) = O, (157)

F¢,¢2(+_c , +oc) = 1, (158)

/_+_ /_+_ f¢,¢2( "),, ")2)d')ld')2 = 1, (159)
OO OG

f,,_(¢1, _2) >_o. (160)

Consider a function of two random variables A(_l, ¢2). The mean value of this function is obtained

by integrating over the two dimensional region:

= A(')I, ")2)f¢,¢2(')1, ')2)d_,,d')2. (161)
oo

The covariance C_,¢_ of two random variables is defined as

C¢,¢2 = <(_)1 -- ¢1)(¢2 -- ¢2) >" (162)

Higher order joint moments of the product j k¢1¢2 are given by

mjk = <¢3,_>. (163)
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andhigherorderjoint centralmomentsaregivenby

IXjk = <(¢1 -- ¢1)J(¢2 -- ¢2) _'>. (164)

Conditional statistics are important in situations where one random variable takes on a prescribed

value. For example, the conditional density f¢_l¢:(!/,lJ72) given by

A,1 2(71t72) = f(¢1,72)
f(72) (165)

is the probability density function of the random variable ¢1 for a given value of the random variable

¢2. Conditional mean values are given by the expression

I;2A(¢11¢2) = A(71)f¢llC2(¢ll¢2)d71 (166)

and is essentially the average of the function A at a fxed value of ¢2.

Extensions to more than 2 random variables is inductive. For example, the mean of the reaction

rate _"_(¢i, ¢2, ..., eN,) requires knowledge of the joint PDF f(¢1, $2,---, eg,):

Z i+_2i+_?Do ---- "'" d-'a(1_'1,7'2 .... ,7N.)f(71,72, ..., 7N¢)dTld72...dTN+. (167)

(When there is no fear of ambiguity as to what random variables are involved, the subscripts for

PDF's and CDF's may be dropped).

The extension of Eq. (149) to more than one random variable is:

f4b(%5) = <77(%5 - ¢)> = <77(1,!,1 - (Pl)77(g'2 - (D2)"" "77(_N+ -- (_N¢) 3>. (168)

3.3.5 Large Eddy PDF

The PDF's considered so far are not fully suitable for LES since they do not contain any information

about the filter G(x). A "Large Eddy PDF" that is consistent with spatially filtered quantities may

be defined as follows: 9°

fL(¢; x,t) = - ¢(x,t)]C(x' - x)dx t. (169)

The Large Eddy PDF is therefore seen to be the spatially filtered value of a delta function in contrast

to the "conventional" PDF which can be defined as the ensemble average of a delta function. In

either case the delta function is the fine grained PDF introduced in section 3.3.3

Evaluation of spatial averages and moments is achieved by integrating with the Large Eddy PDF

34



just asensembleaveragesand momentsareevaluatedusing"conventional"PDF's. Considerthe
function A((/)) of the random vector ¢(x,t). The filtered variable A(x,t) is then given by the

expression:

A(x,t) = /T_ A(x',t)G(x'- x)dx' =/_'_ A(O)fL(¢,x,t)d¢. (170)
J-o_ J-co

For compressible LES, it is useful to define the Fa.vr5 PDF .fL = PfL/ < P >. The Favr_ filtered

variable A(x, t) is then given by' the expression:

A(x,t) = i+2 A(d_)YL(¢,x,t)d¢. (171)

3.3.6 PDF Transport Equation

The transport equation for the joint compositional PDF in a turbulent reactive flow is given by: r2

+ + =
Ot Ox, (9_

o 1¢\>(¢)h1 <<'1¢)h] (172)
0v, / J - 0x,

Summation over a, = 1,2,...,N¢ is implied. In the context of Large Eddy Simulation, the PDF fL

has a slightly different meaning than that intended by Pope; the PDF here is the Favr6 filtered

Large Eddy PDF as described in section 3.3..5. The first two terms on the left hand side of the

equation represent convection of the PDF by the mean flow in physical space. The last term

on the left hand side is due to chemical reaction. Note that this term is closed and requires no

modeling. This is the major advantage PDF methods have over other approaches. Also note that

the derivative is in compositional space rather than physical space. This is reflected by the fact

that the chemical reaction serves to change the compositional makeup of the mixture rather than

to provide a mechanism for motion in physical space. The first term on the right hand side is due

to molecular mixing. Molecular mixing, like reaction, provides transport in compositional rather

than physical space. In general, the mixing term tends to homogenize the fluid and hence lowers

the scalar variance. The remaining term represents turbulent transport of the PDF by the small

scales.

3.3.7 Modeling of Unclosed Terms

The two terms on the right side of Eq. (172) are unclosed and therefore a model must be provided

to properly account for the effects they have on the larger scales. In the present work, a simple
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gradient-diffusion model has been employed for the turbulent transport term:

_ ,, - oil ( Ta)
p<u I¢>fL = -r,

where r, = I_t/Sct.

The modeling of the molecular mixing term has been the focus of intense investigation in the

past. 82,91,s°,92 Many mixing closures fall under the general category of Coalescence/Dispersion

(C/D) models as characterized by Pope. 93 Curl's model and the modified Curl model of Janicka

et aL so fall in this category. In the present work, Dopazo's deterministic relax to mean model has

been utilized. Kosaly 94 has shown that Dopazo's model belongs to the general class of C/D closures

under certain limiting conditions. This model has been selected due to its ease of implementation

into the numerical solution and its efficiency. Although the use of different mixing models results

in different behavior of moments of the third order and higher in 0 D turbulent mixing simulations,

it is expected that the difference under more realistic conditions will have little effect on mean flow

quantities.

3.3.8 Langevin Equation

The basis of the numerical scheme used for the solution of the PDF transport equation relies upon

the principle of equivalent systems, r2 Two systems that display dissimilar behavior may actually

have identical statistics. In the Lagrangian solution technique used to solve the compositional PDF

equation, Monte Carlo particles are distributed throughout the flowfield. Each of these particles

carries information about the scalar field. Additionally each of these particles obey certain equations

which govern its motion in three dimensional space. It is important to recognize that the Monte

Carlo particles are not fluid elements. In fact, while fluid particles follow smooth trajectories,

the Monte Carlo particles follow trajectories which are continuous but not differentiable. The

importance, however, of the Monte Carlo particles is that they are developed in such a way such

that they evolve with the same PDF associated with genuine fluid particles.

The Monte Carlo particles undergo motion in three dimensional space by convection due to the

mean flow velocity and diffusion due to molecular and turbulent viscosities. This type of general

diffusion process is represented by a Langevin equation: 72

dXi(t)= _{+ _j dt + t--_-2 dH_,
(174)

where Xi is the Lagrangian position of the Monte Carlo particle. The stochastic term IV,. is the

stochastic Weiner process. The Weiner process is best understood by considering the function

36



Wd(t,_) which changes value at discrete time intervals: 72

N

14/_(tn) = (At) 1/2 _ _¢i, (175)
i=1

where (,_ (n = 1,2, ..., N) are N independent normalized gaussian random variables and the time

interval from t = 0 to t = T is divided into ATequal subintervals of duration At = T/N. Consider

the increment

AlYd(t,__l) = (n(At) 1/2. (176)

The Weiner process can be defined as Eqs. (175)-(176) in the limit At _ 0. Note that although

the process is continuous, it is not differentiable since AWd/At is undefined as At vanishes.

It must be emphasized that although the Langevin equation given by Eq. (174) is stochastic, Eq.

(172) which governs the transport of tile joint scalar PDF is deterministic.

3.4 Numerical Solution

Because of the added dimensionality the compositional variables present in the PDF Transport

equation its solution by conventional finite difference or finite volume methods is intractable for

engineering problems. Instead, a Lagrangian Monte Carlo solution algorithm is utilized. It is an

established fact that while the work required by finite difference schemes increases exponentially

with added dimensionality, the work associated with Monte Carlo schemes only increases linearly. 93

Thus Monte Carlo methods provide an attractive technique to solve problems with a large number of

independent variables. The essentials of Lagrangian Monte Carlo schemes in relevance to turbulent

flows are due to. _2

In the solution procedure numerous particles are distributed throughout the domain. Each of these

particles carries information about the compositional makeup of the fluid. Although Monte Carlo

particles and fluid particles are fundamentally different their PDF's are identical. Thus a solution to

the PDF transport equation can be can be attained indirectly by solving for the spatial location and

compositional makeup of the Monte Carlo particles. The equation governing the spatial location of

the particles is the Langevin equation (Eq. (174)) and the processes of mixing and reaction govern

the compositional evolution. Since the compositional PDF provides no information about the

density or velocity fields, this information must be determined by alternative means. Conventional

finite difference schemes are used to solve the governing transport equations for these variables;

the Monte Carlo procedure is used only to determine the species mass fractions. Additionally, in

the case of temperature dependent chemical kinetics, the energy (or enthaJpy) is solved using the

Monte Carlo procedure. In the present research temperature independent kinetics are used and the

total energy equation is solved using finite differences in the usual manner.
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3.4.1 Finite Difference Procedure

The methodology used to solve the large scale continuity, momentum and energy equations is the

fourth order spatially accurate finite difference scheme as developed by Gottlieb and Turkell) ° The

generalized transport equation may be written in the vector form:

0U OF 0G

O--_+ _x + _ = H (177)

where U is the vector of dependent conserved variables:

U = _
(178)

The vectors F and G are the flux vectors in the x and y directions respectively:

__4

pu

F = puu - r_x + T_

puv - rx_ + T_

(-rE - _)r, - rx_ + qx - Q_

(179)

{ }
pv

G = p_ - r_x + Ty_
_:_ - ÷_ + Tyy (180)

(_k - ,_)_ - _ + _ - Q_

The source vector H = 0 since the species equations are not solved by the finite difference method

and the body force vector is neglected.

The Gottlieb-Turkel scheme is a higher order accurate variant of the well known 9s predictor-

corrector method. For Eq. (177) it is implemented in unsplit form as:

uT,j = u,_j - --At F _ ,_ At. G_. n ,_
6_/[- ,+2,3 + 8Fi+1,_ - 7Fin, j] - 6--_y[- .,j+2 + 8G,,:+ 1 - 7Gi,j] + AtHi, j (181)

u;}=UTj at . . _X_.G. • ,
, , 6Ax[Fi_2,j - 8Fi_l, j + 7F:,j]- 6--_y l i,j-: - 8Gi,j-1 + 7G_,j] + AtH_j (182)

V,:+ 1 1 ..= _[u;_,j + u_,¢] (183)

The CFL condition for this scheme requires that the CFL number should be less than 2/3 for

numerical stability.
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3.4.2 Monte Carlo Particle Method

The species mass fractions are determined using the Monte Carlo particle method. A two stage

Runge-Kutta scheme is used to solve the Langevin equation to determine the particle positions.

For the general diffusion process governed by:

dXi(t) = Di(X(t), t)dt + B(X(t), t)dI4_(t) (184)

a Runge-Kutta scheme can be written as:

X; = X? + D?_,t + Bn(_t)'/2 C (185)

X_" = X_ + D_At + B*(At)I/2F,_ (186)

.;C+' = + xT] (187)

Note that the standardized gaussian random vector _i is the same at the predictor and corrector

levels. This is to ensure that the numerical approximation given by Eqs. (185)-(187) reflects the

Markovian behavior of the general diffusion process. 96 Markovian or "memoryless" processes are

stochastic processes in which future states are not influenced by past behavior. 87'97'89

The drift coefficients Di and B require knowledge of the mean field velocity and viscosity. Inter-

polation is required for these quantities since the Lagrangian particles are not restricted to the

finite difference grid points. Fourth order Lagrange polynomials are used to interpolate the desired

quantities from the grid to the particle location.

Each particle contains information regarding the composition of the scalar field. This includes

the density weighted species mass fractions (and temperature if the chemistry model requires it).

Let ¢_ denote the value of the a th scalar (a = 1,2,...,N_) for the k th particle (k = 1,2,...,N)

located at tim Lagrangian coordinate X _" as described in section 3.3.4. At each time step these

compositional values are subject to change due to the effects of molecular mixing and chemical

reaction. Using Dopazo's relax to mean model for molecular mixing the composition of each

particle changes according to

(0_)mi_ k ,, 1= (0_) - ((0_)'_ - <¢_>)exp[-_C¢_,,At] + <0_> (188)

at each timestep. The turbulent mixing frequency wt is backed out from the turbulent viscosity

and length scale using the relation wt = 3vt/A2. After the mixing step has been completed the

particles undergo reaction. This is performed by sweeping over all the particles and determining

the fine grain reaction rates _;,ko. For example, for the simple reaction ,4 + B ---* P with reaction

rate d3A = --k.f(pfA)(PfB), the fine grain reaction rates are given by

,&kA = - l,-f (p f_ )( p f_ ) = -kf(_.T_ )(_-_). (189)
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Thenewparticlecompositionis thendeterminedfrom:

(190)

3.4.3 Determination of Filtered Quantities

For homogeneous flows averages are determined by simply' summing over all the particles:

N N

<A(¢)> = _ A(_b k) = _ A k.
k=l k=l

(191)

For inhomogeneous flows the situation is complicated by the fact that the PDF varies spatially. A

EN=I AkG_:(x)
NZ:k=lak(x)

(192)

discrete summation consistent with the Large Eddy PDF is:

A(x, t) = EN=I A(Xk(t)' t)G(Xk(t) - x)
NZk=l G(Xk(t) - x)

Averages and higher order moments can be calculated in this manner. In the present work where

a uniform filter of width A = 2Ax = 2Ay has been used, calculation of averages at the grid point

with coordinates (i, j) reduces to summing over all particles in the square region of dimension 2Ax

by 2Ay centered at the grid point.

For Reynolds averaged solutions, similar procedures must be taken to generate meaningful ensem-

bles. However it should be noted that in the case of LES the spatial dependency of the ensemble

is reflected by the filter G(x) in the definition of the large eddy PDF (see Eq. (3.3.5)); for the case

of RANS there is no such spatial dependency in the "conventional PDF". Rather, the practice of

constructing an ensemble out of particles within some volume of a point is out of necessily since in

general the Lagrangian particles will not coincide with the Eulerian grid points. In this sense LES

is more in tune with the Lagrangian solution procedure.

3.5 Results

To demonstrate the feasibility' of LES-PDF, one non-reacting and one reacting simulation were

performed. For comparison, two additional runs were performed in which the Favr6 averaged

species equations were solved by' the finite difference method described in section 3.4.1 rather than

the LES-PDF methodology. For the reacting finite difference simulation the mean reaction rate

was modeled as wa = d_c,(¢). It is well recognized that such an assumption may be off by orders

of magnitude and gross errors can be incurred. This simulation was performed to compare to the

LES-PDF reacting simulation in which the effects of reaction are accounted for exactly. In order

to provide meaningful results, an additional control simulation was run using the LES-PDF using

w_ = a)_((;b) to elucidate any' discrepancies with the finite difference procedure.
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All simulationswereperformedat a Reynoldsnumberof 800basedon initial vorticity thickness
(5,,0.The physicaldomainill all casesis 60(_0by 306_,0 whichwasdiscretizedinto a 256by 128
computationaldomain.The velocityprofileat the inlet consistsof a 4 to 1 velocityratio with a
hyperbolictangentdistribution. Forcingof thecrossstreamvelocityat thefrequencycorresponding
to themostunstablemodefor thehyperbolictangentvelocityprofilewasusedto perturb the layer
and inducecoherentlargescalestructures,usZerofirst derivativeconditionsareassumedat the
freestreams.Thechemistrymodelutilizedisan irreversiblesecondorderisothermalreactionof the

form A + B ---* P. In each of the reacting simulations the DamkYhler number Da = kl/[Urel/_,,o]

was set to 2.

In order to save time during the computation, only the region surrounding the reaction zone from

y = -3.75 _o to y = 3.75 6,_o is initialized with the Monte Carlo particles (one quarter the com-

putational domain). In each cell ill this region 30 particles were randomly, placed. Thus on average

roughly 120 particles fall within the filter width 2Ax by 2Ay to constitute all ensemble, although

this number may vary somewhat as particles convect and diffuse from cell to cell. Additionally

as particles exit the domain, new particles are introduced at x = 0 with a randomly chosen y

coordinate in the vicinity of the reaction zone.

Figure 3.1 is a contour plot displaying the particle density. Note how the Monte Carlo particles

are only distributed in the region surrounding the reaction zone. There is some variation locally',

however overall the particle density is roughly uniform at a value of 120 particles per ensemble.

The oscillatory behavior of the particle zone in the last third of the domain is suggestive of some

organized large scale structure. Indeed such coherent structures are evident in Fig./ 3.2 which

compares contours of species A Favrb averaged mass fraction for LES-PDF (3.2(a)) to those of

standard finite difference LES (2 - b) for the non-reacting case. The solution provided by the PDF

methodology compares favorably with the standard procedure. Such comparison is important in

that it demonstrates that the particle method is capable of resolving the convective and diffusive

transport mechanisms.

Figure 3.3 displays the contours of species A mass fraction for the reacting case. Although at first

glance the plots appear similar, it is sool, apl)arent that the gradients in Fig. 3.3(b) (finite difference

with _ = &o(_b)) are steeper suggesting the reactants are separated by, a relatively thin reaction

zone. This is indicative that the reaction is more vigorous and has progressed further compared to

the LES-PDF solution depicted in Fig. 3.3(a). This is more clearly' seen in the product mass fraction

contours in Fig. 4. Substantial less product formation is predicted by the LES-PDF simulation and

the solution is significantly more diffuse. Clearly this is a result of the LES-PDF solution resolving

the SGS subgrid fluctuations while these terms are neglected in the finite difference solution.

To assist in further appreciation of the effects due to the SGS scalar fluctuations the covariance

(PfA)'(PfB)' is plotted in Fig. 3.5(a) for the non-reacting case and Fig. 3.5(b) for the reacting

case as determined by the solution to the large eddy PDF. The negative values of this quantity

as predicted by the LES-PDF procedure indicate that neglect of this subgrid term would result in
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unphysicaJly high reaction rates and product conversion. Further evidence is given by reaction rate

contours predicted by LES-PDF in Fig. 3.6(a) and that predicted by the finite difference solution

in Fig. 3.6(b). Clearly the reaction rates in the LES-PDF solution are an order of magnitude

lower than that predicted by the solution neglecting the SGS scalar fluctuations. This indicates

the approximation _ = &_(_) cannot be justified. While the scalar covariance is very difficult to

model, LES-PDF avoids this obstacle altogether as it has the distinction of being able to resolve

this term.

To be confident that the LES-PDF calculations are representative of the true physics, an additional

simulation was performed with the particle method in which the reaction rate was improperly

"modeled" by Do = &o(_). Figure 3.7 is a contour plot of the product T' mass fraction. Notice

that the product distribution exhibits a remarkable likeness to the finite difference solution to the

species transport equations with the scalar SGS terms neglected. Whether the PDF method or

the finite difference procedure is used the product formation is grossly overpredicted if the subgrid

correlations are neglected. Figure 3.8 displays the reaction rate contours for this simulation. As

expected the predicted reaction rate is an order of magnitude higher due to the neglect of the subgrid

terms. This agreement between the finite difference and the PDF procedures is important since it

elucidates that the neglect of the SGS terms rather that the difference in numerical procedure is

responsible for the discrepancy of the previous runs.

3.6 Conclusion

A PDF method suitable for chemically reactive flows is developed in the context of large eddy

simulation. The clear advantage of PDF methods is their inherent ability to resolve SGS correlations

that otherwise have to be modeled. Because of the lack of robust models to accurately predict these

correlations in turbulent reactive flows, simulations involving turbulent combustion are often met

with a degree of skepticism. The PDF methodology avoids the closure problem associated with

these terms but rather treats the reaction exactly.

The first LES-PDF simulations of a chemically reactive flow have demonstrated the feasibility of

utilizing Monte Carlo methods in the context of LES. Comparison with a finite difference solution

which does not attempt to model the SGS scalar covariance indicates that neglect of this term leads

to unphysically high product conversion rates.

While the present work indicates there is much promise in the LES-PDF methodology, much work

needs to be done. Utilization of compressible dynamic SGS models is a natural starting point.

Furthermore, the development of LES with variable grid and filter spacing as addressed by 99 is an

important step towards the ability of such models to predict engineering flows with complex geome-

tries. PDF transport methods require the closure of molecular mixing; in the present research this

has been addressed with a simple deterministic model. Mixing models require a turbulent mixing

frequency. Proper determination of this mixing frequency is desirable. Additionally, inclusion of

42



the energyin the compositionaldomainis a necessarystepin order to simulate reactive flows with

temperature dependent kinetics. Furthermore, since the reaction is represented without approxi-

mation realistic chemical kinetics present no difficulty to the particle method and hence should be

investigated. Much of this work is already underway.

Additional extension of the LES-PDF methodology to solve the joint velocity-composition PDF is

also an area to be explored. This area has seen considerable development in the area of RANS by

Pope. 1°° The velocity-composition PDF has the added advantage that velocity correlations appear

in closed form and eddy viscosity models are not required to model their effects. 72 In the case

of LES, however, it is expected that the subgrid models are more universal in their applicability

and hence the dependency on SGS closures for the scalar PDF method does not pose too much

concern. Furthermore, particle methods as described in this report can be incorporated into the

large stockpile of existing finite difference and finite volume CFD codes.

4 Work in Progress

We are currently' in the process of combining the techniques discussed in the last two sections for

LES of high speed reacting turbulent flows. The primary tool in this part of our activities is the

Monte Carlo LES-PDF solver as discussed in the last section. However, our aim is to replace

the Smagorinsky hydrodynamic subgrid model with an algebraic closure. For this purpose, the

same computer code used for LES-PDF is being modified, presently, we are only considering LES

of incompressible reacting flows. Therefore, only the models developed previously 19'1 are being

utilized (of course with proper modifications to make them suitable for LES). At this point, there

are some computational problems tha_ need to be resolved. We hope to have some results before

our next report is due.

In the upcoming year (Year 3 of phase II), our efforts will be concentrated on the following tasks:

(1) Completion of the mathen_atical formulation and computational implementation of LES via

algebraic closures.

(2) Generation of extensive computational results via RANS of high speed flows with and without

chemical reactions and comparisons with experimental data.

(3) Fine tuning of the LES-PDF code. Application of this code for simulations of several reacting

flow configurations. Comparisons with experimental data.

(4) Extension of LES with consideration of the joint PDFs of subgrid velocity and scalars. Our

efforts will be concentrated primarily on the mathematical formulations and related issues.
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Dr. Peyman Givi is the PI of this project. Drs. Dale B. Taulbee and Cyrus K. Madnia serve as the

Co-PIs. As before, Dr. Givi is responsible for a timely and successful completion of all the tasks.

There are presently two Ph.D. candidates who are being supported full-time by this grant: Mr.
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Figure Captions

Figure2.1:The reductionof the averaged residuM forthe Gottlieb-Turkelscheme.

Figure 2.2: Downstream evolution of the shear-layer width at steady-state.

Figure 2.3: Cross-stream variation of (U - U1)/(U1 - U_) 2 for the mixing layer.

Figure 2.4: Cross-stream variation of (u'2)/(Ul - U2) _ for the mixing layer.

Figure 2.5: Cross-stream variation of (u'v')/(U1 - U2) 2 for the mixing layer.

Figure 3.1: Particle number density (per ensemble) contours.

Figure 3.2: Contour plots of species A mass fraction (Da=0): (a) Monte-Carlo LES-PDF, (b) finite

difference.

Figure 3.3: Contour plots of species .A mass fraction (Da=2): (a) Monte-Carlo LES-PDF, (b) finite

difference.

Figure 3.4: Contour plots of product 7:' mass fraction (Da=2): (a) Monte-Carlo LES-PDF, (b)

finite difference.

Figure 3.5: Contour plots of SGS species covariance : (a) Da=0, (b) Da=2.

Figure 3.6: Reaction rate contours: (a) Monte-Carlo LES-PDF, (b) finite difference.

Figure 3.7: Product P mass fraction contours. Results generated by Monte Carlo LES-PDF

assuming _(¢) = &(¢).

Figure 3.8: Reaction rate contours. Results generated by Monte Carlo LES-PDF

assuming _(¢) = &(¢).
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Fi_Ltre 1 : Particle nu_Lber density (per ensemble) contours



(a)

(b)

(Da=O) (a) Monte-Carlo LES-PDF, (b) finite difference
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Figure 3.3: 8ontour plots of species A mass fraction

(Da=2) (a) Monte-Sarlo LES-PDF, (b) finite difference
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(b)

Figure 3.4: Contour plots of product P mass fraction

(Da=2) (a) Monte-Carlo LES-PDF, (b) finite difference
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Figure 3.5: Contour plots of S8S species covariance

(a) oa=O,(b) Da=2
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Fi_e 3.6 : Reaction rate contours: (a) Monte-Oarlo LES-PDF,

(b) finite difference



Figure 3.7: Product P mass fraction contours. Results

generated by Monte-Sarlo LES-PDF assuming <AB>=<A><B>

Figure 3.8: Reaction rate contours. Results generated

by Monte-Sarlo LES-PDF assuming <hB>=<A><B>




